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Abstract

We discuss the problem of theory change in physics. Particularly, we consider the theory of

kinematics of particles in distinct space-time backgrounds. We propose a characterization of the

concept of physics theory based on symmetries of these kinematics. The concepts and tools of

the theory of groups will be extensively used. The proposed characterization is compatible with

the modern ideas in philosophy of science – e.g. the semantic approach to a scientific theory.

The advantage of our approach lies in it being conceptually simple, allowing an analysis of the

problem of the mathematical structure and hints at a logic of discovery. The problem of theory

change can be framed in terms of the notions of Inönü-Wigner contraction/extension of groups

of symmetry. Furthermore, from the group of symmetry the kinematic equations or physics laws

associated with the underlying physical theory can be obtained – this is notoriously known as the

Bargmann-Wigner program.
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I. INTRODUCTION

A major task in the philosophy of science is to provide a characterization of a scientific

theory. In the 20th century there were striking developments in this field. The conceptual

by-products developed then are nowadays well-known. From the 30’s to the 50’s, appeared

the syntactic approach; next in the 60’s, the semantic approach, followed finally, in the 70’s,

by the structuralist approach. All of these approaches share a general perspective in the

search of a meta-theory of the scientific theory. Not surprisingly, they are heavily based
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on the logic resources1. Nowadays the semantic approaches are certainly dominant. As

examples, we may cite the works of Bas van Frassen [29] and Steve French and Newton

da Costa [10]. Nevertheless, a growing number of works have emphasized some of their

limitations 2.

This work presents a different perspective for the characterization of a scientific theory.

We concentrate on physical theories which offer the advantage of a great precision of their

characterizations: the availability of their underlying mathematical structures allows good

determination and description of their essential aspects. We will be even more focused and

consider a particular class of physical theories based on the existence of symmetry groups.

A main idea of this work is to characterize a physical theory by a pair of labels consisting

of a group of symmetry and a domain, characterized by a certain type of representation of

the group.

Inspired by van Frassen’s work [30], we reassess in this new perspective the problem of

theory change. Moreover, this reassessment hints at a ” logic of discovery ” [20]. In fact,

the new foundations lied by characterizing a physical theory in terms of groups of symmetry

present the constitutive elements of a theory change: in this context, theory changes are well

encapsulated by the notion of Inönü-Wigner contraction/extension. Here we present explicit

examples guided by symmetries, to demonstrate their heuristic value, and the pertinence of

our proposed characterization.

We emphasize that this approach captures the way physicists construct and present their

works. It is based on the successful program settled by Wigner, Inönü and Bargmann,

later completed by Bacry and Lévy-Leblond, for the theory of free particles. Starting from

a kinematics covariant (INVARIANT ? ***) Êunder Galilean group, we end up with a

kinematics covariant (INVARIANT ? ***) under (anti-)deSitter group. This progression,

that we present here, may be seen as a path towards simplicity : this concept of group theory

(defined below) is also dubbed “more fundamental” by physicists.

Section 2 *** delimits *** the boundaries of our discussion to those physical theories that

1 Recent studies of a particular foundation of physical theories [27] are still developed in an exclusively logic

approach.
2 Cf. [16]. Frigg, as quoted by Halvorson [16], had already pointed out in a seminal paper [13] the crucial

limitations regarding the possibility of the semantic conceptions to be able to account for the whole

complexity involved in the structure of the scientific theories.
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are suitable to be described in terms of symmetry groups. We introduce their characteriza-

tion in terms of a group of kinematical symmetries with its possible representations.

Section 3 provides the necessary background of the notions of Inönü-Wigner contrac-

tion/extension at the basis of our conception of theory change. Once these basis are settled,

we engage in a tour from Galilean groups to (anti-)deSitter groups, via Poincaré group, in

order to illustrate the theory change for the kinematics of a free particle. Section 4 closes

this work with a discussion and concluding remarks.

An appendix briefly presents the main aspects of the Bargmann-Wigner program.

II. PHYSICS, PHYSICAL THEORY AND DOMAINS

Focusing on the discipline of physics, we propose a minimal characterization of the nature

of a physical theory, through a set of labels attached to it. Such a labeling process is not

sufficient to entirely account for the intricate web of constructs, processes and interpreta-

tions of a physical theory, and cannot be seen as a general definition. We believe however

that any general definition (of a physical theory) must somehow encompass the proposed

characterization. Leaving that for future work, we emphasize the pragmatical character of

our approach to explicitly discuss the problem of theory change.

Following a position in a sense pioneered by A. Einstein, we characterize a physical theory

guided by the physical principle (or postulate) that states: “the laws of physics are the same

(does not change) for any class of inertial observers 3”. The remarkable fact is that a

class of inertial observers appears as a symmetry class of the kinematic group, i.e., the

group of transformations mapping one representative to another, with composition law 4.

We now set the boundaries for the present discussion. We focus on the physical theories of

non-interacting (equivalently, free) particles, whose motions are geodesics of some geometric

background (we do not consider fields, strings and/or similar/derived objects). In this

scenario, we characterize a physical theory by a pair of labels consisting of a domain and a

kinematic symmetry:

3 Observer here is equivalent to a system of detectors or measuring apparatus.
4 There are of course other possible algebraic structures one can also consider, e.g. [15].
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Symmetries

The first label of a physical theory consists of its [kinematical] symmetry: Galilean

(Newtonian), Poincaré (special relativity) and deSitter/anti-deSitter (cosmological).

Domains

The second label — to which we refer as the domain — refers to the type of repre-

sentation one considers for the symmetries of the theory: the classical or the quantum

regime.

A group may be defined in an abstract way as a set endowed with an operation law

satisfying certain axioms [3, 14]. On the other hand, it may be represented by its linear action

on a linear space, on which its elements act as operators; the operation law is identified with

the composition. The representation is defined (fonctorially) as the group homomorphism

from the original abstract group to the group of endomorphisms of the linear space. We

can then handle the elements of a group as transformations acting on the underlying linear

space associated to a physical system.

We restrict ourselves to two types of linear representations, defining two possible domains

of a theory. In the classical domain, the group is considered as a kinematic symmetry. It

acts as canonical transformations on the “phase space ” endowed with a symplectic structure

[11]. In the quantum domain it acts (unitarily) on a Hilbert space of states. This is also

known as (anti-)unitary representation.

The quantization procedure is defined as the transition from the classical domain to the

quantum one. It may be accomplished in different ways, e.g., Dirac quantization, geometric

quantization, deformation quantization and so on. The reciprocal operation may be phrased

as “taking the classical limit”. We do not discuss these procedures here but give an insight

of quantization in xxx.

In an idealized sense, a given symmetry together with a domain is equivalent to the

ensemble of all the constructs of a theory, that is, the physical quantities like mass, spin,

equations of motion and so on. Such constructs can be obtained from the representation

theory of the physical theory, according to the strategy known as the Wigner-Bargmann

program. See the appendix for a small discussion of this program.
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III. CONTRACTIONS AND EXTENSIONS OF GROUPS

We apply the characterization of physical theories based on the concept of symmetry to

the problem of theory change: the passage from a physical theory to another. This notion

involves a principle of correspondence. Loosely speaking, this principle encompasses

the idea that one can move forward from a certain point to another as long as the move

back way is known: the idea of moving forward is intimately connected and dependent on

the ability to move backward. In another guise, we are stating that it is the step back that

allows for the jumping ahead.

For an intrepid navigator about to sail across unknown oceans, it would be a suicidal

journey if he could not sail against the wind and sea streams. He should keep the ability

to come back home. The example of the Kon-tiki and its journey across the South Pacific

comes to mind here. Other examples are the Ariadne’s thread or the Hans and Gretchen’s

bread crunches (those taught us that there might be other problems to face, like a bird

eating the crunches).

The analog here of the unknown ocean or of the Minotaur’s labyrinth may be seen as the

landscape of physical theories: generalizing a theory is a kind of navigation in this landscape

and one must keep the ability of restoring the initial theory from its generalization. This

prescription may be related to two principles of the XXth century physics: the principle

of correspondence evoked by Einstein in his work on special relativity, that we associate

with the symmetry label characterizing a theory; and on the other hand the principle of

correspondence stated by Bohr in the dawn of quantum theory which focusing — one could

argue — on the domain label5.

The following illustrates the application of the principle of correspondence, in combination

with our characterization of a physical theory in terms of its kinematical group. Our main

tools will be the Inönü-Wigner contraction and extension of Lie groups (described generally

below). We study the Inönü-Wigner extension from a Newtonian group to a cosmological

group as an instance of theory change.

5 We thank A. Polito to call our attention to the parallel between the proposed characterization of a theory

and the two statements of the principle of correspondence proposed by Einstein and Bohr.
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A. Group contractions

The Inönü-Wigner contraction of a Lie group [18] is best described in terms of its as-

sociated Lie algebra which can be seen as the Lie group infinitesimal counterpart. The

Inönü-Wigner contraction is a process allowing one to construct a new Lie algebra not iso-

morphic to the initial one, but preserving some of its structure. It proceeds by singular

transformations of the infinitesimal elements (the generators) and, in this sense, it can be

generalized to other algebraic structures [19]. Starting from a Lie algebra g, one constructs

a parametrized family of new algebras, gε, which are isomorphic to g for ε 6= 0, but not for

the singular value ε = 0.

The algebras gε, for ε 6= 0, are obtained by reparametrizations of g. Then, the new Lie

algebra emerges from a singular limit of the parameter ε, that is, ε → 0. This new Lie

algebra generates in turn a new Lie group via the exponential map (2). The process of

contraction may be seen as a special case of degeneration [6].

A Lie algebra g is conveniently described by a family of generators Ji, with i = 1, ..., N

(its dimension), together with commutation relations

[Ji, Jj] = fijk Jk, (1)

where the antisymmetric operation [·, ·] is called the commutator and the fijk the structure

constants. A Lie algebra element expands as ai Ji (implicit index summation). And each

Lie group element g ∈ G is obtained through the exponential map6

exp : RN → G, (αi) 7→ g(αi) = eiα
iJi , (2)

where αi ∈ R, with i = 1, ..., N .

Concretely, let us assume that the Lie algebra g contains a subalgebra h ⊂ g. We call p

the complement of h in g, i.e., g = h⊕p, where the symbol ⊕ stands for direct sum of vector

spaces. The defining commutators of the Lie algebra can then be schematically decomposed

as

[h, h] ⊂ h, [h, p] ⊂ p, [p, p] ⊂ h + p. (3)

6 The exponential map allows one to obtain only those elements in the Lie Group continuously connected

to the identity. This is sufficient for the ensuing discussion.
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The reparametrization is the replacement of each generator J ∈ p by a generator J ′ = ε J ,

with ε 6= 0. In abbreviated notation, p becomes p′ = ε p. The algebra remains the same,

but the commutation relations take the reparametrized form

[h, h] ⊂ h, [h, p′] = [h, ε p] ⊂ ε p = p′, [p′, p′] = [ε p, ε p] ⊂ ε2 (h + p). (4)

The singular limit ε→ 0 gives a well-defined but different Lie algebra obeying

[h, h] ⊂ h, [h, p′] ⊂ p′, [p′, p′] = 0, (5)

at the singular limit. Observe that p′ is now an Abelian algebra.

The new Lie algebra obtained is a semi-direct product of Lie algebras denoted by g′ =

h n p′, where the symbol n means semi-direct product. If the second relation in (5) were

[h, p′] = 0, then the new Lie algebra would be a direct product g′ = h× p′.

1. Example of Inönü-Wigner Contraction

We now give a simple example of the Inönü-Wigner contraction. The group SO(3) of

rotations in three-dimensional Euclidean space admits the Lie algebra so(3). It is generated

by Ji, i = 1, 2, 3, with commutation relations

[Ji, Jj] =
3∑

k=1

εijk Jk. (6)

Here εijk is the Levi-Civita symbol: ε123 = 1 with odd permutations of the indexes changing

sign, even permutations keeping sign, and the other components vanishing. Explicitly,

[J1, J2] = J3, [J2, J3] = J1, [J3, J1] = J2. (7)

We now define h as the subalgebra generated by only J3, so that J1, J2 generate p. We

recognize the same structure as in (3) with [J3, J3] = 0 being an example of the schematic

relation [h, h] = 0. We rescale the elements of p by Λ as

j1 = Λ J1, j2 = Λ J2, j3 = J3, (8)

and keep J3 fixed. For non zero values of Λ, the algebra remains the same, although with

the new expression for the non-vanishing commutators

[j1, j2] = Λ2 j3, [j2, j3] = j1, [j3, j1] = j2. (9)
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Performing the contraction by taking the limit Λ→ 0, we obtain a new Lie algebra with

three generators obeying the relations

[j1, j2] = 0, [j2, j3] = j1, [j3, j1] = j2. (10)

They characterize the Lie algebra e(2) = so(2) n R2 of the two-dimensional Euclidean

group E(2). Note that SO(2), the (special) orthogonal group, is the group of rotations

of the two-dimensional Euclidean space and it is natural to associate to it the group of

translations of the same space, to complete the isometries. This corresponds to the natural

augmentation SO(2)→ ISO(2) = E(2).

It is instructive to observe what happens to some invariant quantities of the Lie group.

The so(3) algebra admits the invariant R defined through

J2
1 + J2

2 + J2
3 = R2 1, . (11)

After the rescaling in (8) , this equation becomes

j2
1 + j2

2 + Λ2j2
3 = Λ2 R2 1. (12)

The contraction breaks this equation into two independent parts

j2
1 + j2

2 = 0, j2
3 = R2. (13)

B. Extensions

A group that cannot be written as a (semi-)direct product of subgroups is called a simple

group. As illustrated by the example above, the Inönü-Wigner contraction diminishes the

simplicity of the group.

There is an inverse procedure, called the Inönü-Wigner extension, which achieves sim-

plicity. It extends a Lie group, composed as (semi-)direct product of two (or more) other

Lie groups, towards a simpler group: a group with less (semi-)direct products of groups.

For instance, the extension associated with the previous contraction may be written as

ISO(2)→ SO(3), so that we may write the diagram

SO(2)

augm

��
ISO(2) ext // SO(3)
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Note that this diagram may be thought of as expressing the transition from pre-Newtonian

physics to Newtonian physics, in the sense that the latter corresponds to the introduction of

isotropic Euclidean space [23]. We will see below that this diagram may be further extended.

IV. STUDY OF CASE OF THEORY CHANGE: FROM NEWTON TO COSMOL-

OGY

The definitions and discussions of this section follow in some extent from the work of Lévy-

Leblond and collaborators [1, 2, 24]. We display a broad overview of their comprehensive

beautiful works on the classification of the kinematic groups. The kinematic group of a

theory is the group of isometries of the space-time of that theory: the set of transformations

preserving the metric of the space-time with the composition of transformations.

Along the way we can observe rather concrete examples of theory change, that we express

informally as the sequence

Galilei→ Einstein→ (anti-)deSitter→ conformal. (14)

A. Newtonian Kinematic: the Galilei Group

The Galilei group is the group of isometries7 of the space-time R × R3, characteristic

of Newtonian physics, where the first component of this space-time stands for the time

direction.

The (proper8) Galilei group G is defined as the group with elements of the form

g = (b,~a,~v, R) , (15)

7 There are some ambiguities in the definition of the Galilean group as an isometry of a space-time. These

ambiguities come from the fact that even though one is given a fixed underlying space metric together

with a time direction, one may readily seen, after Milne as pointed out by Duval [12], that for different

classes of connections there are different isometries groups we may consider. In hindsight, the Galilean

group we are interested in could be seen as the one obtained via the Inönü-Wigner contraction of the

Poincaré group. This choice breaks the ambiguity by explicitly pinpointing the Galilean group we are

talking about. We call the Galilean group obtained in this manner by Galilei group.
8 The adjective proper means that one is not considering parity (equivalently, spatial-inversion or reflection

through the origin).

10



where b is a time translation; R a three-dimensional rotation; ~a = (ax, ay, az) a three-

dimensional spatial translation; and ~v = (vx, vy, vz) is a Galilei transform (or boost). A

Galilei boost transports a spatial frame to another spatial frame uniformly moving with

relative velocity v = |~v| with respect to the previous one.

The transformation g in (15) acts on a general space-time point (representing an event)

labeled by (t, ~x) as

(t, ~x) 7→ g · (t, ~x) ≡ (t′, ~x′),

~x′ = R · x+ ~vt+ ~a, (16)

t′ = t+ b.

The successive actions of two distinct elements g and g′ provides the multiplication rule

g′g = (b′,~a′, ~v′, R′) (b,~a,~v, R) = (b′ + b,~a′ +R′~a+ b~v′, ~v′ +R′~v,R′R). (17)

The identity element is given by e = (0, 0, 0, 1) and the inverse of g is given by

g−1 = (−b,−R−1(~a− b~v),−R−1~v,R−1). (18)

This representation can be nicely encoded in terms of 5× 5 matrices. The 4-vector (t, ~x)

is written as a 5× 1 vector column by adding a line with entry 1. The action of the Galilei

group on a space-time point is then

g · (t, ~x) =


R ~v ~a

0 1 b

0 0 1



~x

t

1

 =


R · ~x+ ~vt+ ~a

t+ b

1

 . (19)

The Galilei group admits the maximal Abelian subgroup U , generated by spatial trans-

lations and the Galilei boosts. The quotient G/U (the group of classes of equivalence) is not

a simple group: it still contains a (maximal) Abelian subgroup T generated by time trans-

lations. The factor group (G/U) /T is the simple group R of three-dimensional rotations.

Therefore, the associated Lie algebra of the Galilei group is factorized as

g = (rn t) n u ≡ (so(3) nR) nR3. (20)

CORRECT FORMULA
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Ten parameters are needed to describe the Galilei group: one for time translations, three

for spatial translations, three for Galilei boosts and three for three-dimensional rotations.

A unitary representation of the Galilei group may be obtained by the method of induction

(or method of “little groups”). For such representations we necessarily have to add a central

term that may be associated to inertial mass. This fact has deep physical consequences

which hints at the stability of particles in quantum mechanics. If the central extension

is considered, the number of parameters needed to describe the Galilei group increases to

eleven, where the inertial mass is recognized as the eleventh parameter.

The Lie algebra of the Galilei group admits then ten generators (H,Pi, Ci, Lij), i, j =

1, 2, 3, where H (also known as Hamiltonian) generates time-translations, the three Pi (also

known as momenta) generate spatial-translations, the three Ci generate the Galilei boosts

and the three Lij = −Lji generate spatial rotations. Their non-zero commutators are

[Ci, H] = iPi,

[Lij, Lkl] = i(δikLjl − δilLjk + δjlLik − δjkLil),

[Lij, Pk] = i(δikPj − δkjPi),

[Lij, Ck] = i(δikCj − δkjCi).
(21)

In the case of the central extension of the Galilei group, the additional generator, M ,

associated with the inertial mass of a particle commutes with all other generators. Moreover,

the commutator between the spatial-translations and the Galilei boosts are no longer zero,

being modified to [Pi, Cj] = iδijM .

The Galilei group depicts the kinematic symmetries of the non-relativistic free particle.

The later obeys the equations of motion ẍi = 0, i = 1, 2, 3. These equations may be

derived from a variational principle involving an action invariant under the Galilei group of

transformations. This action is defined as the integral S =
∫
dtL of a Lagrangian 9 L = m

2
ẋ2
i .

A variation of trajectory leaves the action invariant if and only if the Lagrangian is invariant

up to a total derivative. This is the case here, namely 10

L =
m

2
ẋ2
i → L′ = L+

d

dt

(
mxivi +

m

2
v2
i t
)
. (22)

9 The Lagrangian may be seen as the difference of kinetic energy and potential energy (zero in this case).

The real trajectories are obtained by minimizing S.
10 This total derivative is intimately related to the need of the central extension of the Galilei group. This

information is crucial for the quantization of the non-relativistic free particle.
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B. Special Relativity: Poincaré Group

The Poincaré group is the group of isometries of the Minkowski space-time. This is a flat

4-dimensional space-time with the (metric) line element

ds2 = −c2dt2 + dx2 + dy2 + dz2, (23)

with c being the speed of light in the vacuum. It includes the space-time translations and

rotations, together with their combinations.

The space-time translations generate its maximal Abelian subgroup R1,3. The factor

(group of classes of equivalence) L = P/R1,3 is known as the (homogeneous) Lorentz group.

This is a simple group. Therefore, the Lie algebra p of P may be written as the semi-direct

product (compare with (20))

p = lnR1,3, (24)

where l stands for the Lie algebra of L. The Lorentz group L = SO(3, 1) comprises the space-

time rotations, which combine three-dimensional spatial rotations with Lorentz boosts. It is

a subgroup of the Poincaré group and the latter is also known as the inhomogeneous Lorentz

group.

We will focus on the component connected to the identity: the proper orthochronous

Poincaré group (that we will also write as P), which does not include the discrete transfor-

mations of time-reversal and of parity. Its general element may be written as

g = (a,R) ∈ P , (25)

where a = (a0, a1, a2, a3) is a 4-translation and R a four-dimensional rotation belonging

to the Lorentz group. The action of g ∈ P on a point x = (x0, x1, x2, x3) of Minkowski

space-time is given by (compare with (16))

x 7→ g · x = x′ = R · x+ a. (26)

The multiplication rule of the Poincaré group is (compare with (17))

g′g = (a′, R′)(a,R) = (a′ +R′a,R′R). (27)

The identity element is given by e = (0, 1). The inverse of an element g is given by (compare

with (18))

g−1 = (−R−1a,R−1). (28)
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This representation of P can be encoded in terms of 5×5 matrices: the four-dimensional

space-time point x = (xµ) is written as a 5× 1 vector column. The action of P is given by

(compare with (19))

g · (t, ~x) =

 Rµ
ν aµ

0 1

 xν

1

 =

 Rµ
νx

ν + aµ

1

 . (29)

We need ten parameters to describe the Poincaré group: four for the space-time trans-

lations and six for the Lorentz group (three for spatial rotations and three for the Lorentz

boosts). The Lie algebra of P admits ten generators, (Pµ, Jµν), µ, ν = 0, 1, 2, 3. The four

Pµ (also known as 4-momenta) generate the space-time translations and the six Jµν = −Jνµ
generate space-time rotations (three spatial rotations and three Lorentz boosts). The com-

mutators are (compare with (21))

[Pµ, Pν ] = 0, [Jµν , Pρ] = i(ηµρPν − ηρνPµ), (30)

[Jµν , Jρσ] = i(ηµρJνσ − ηµσJνρ + ηνσJµρ − ηνρJµσ). (31)

The Lorentz group is associated with the kinematical symmetries of a relativistic free

particle. The corresponding equations of motion are ẍµ = 0, where the dot here means

a variation with respect to a (proper time) parameter, so that one of the equations is

ẍ0 ≡ ẗ = 0. These equations of motion may be derived from an action which, like its

Lagrangian, is invariant with respect to the Poincaré group.

The above kinematics were discussed by A. Einstein in one of his famous 1905 works,

where he proposed a kinematics covariant under the symmetries of the electromagnetism.

Before A. Einstein there was an astonishment among physicists due to the fact that the

symmetries of the Maxwell equations describing electrodynamics (i.e., the Poincaré group)

differed from those of the Newton-Galilei kinematics, i.e., the Galilei group.

C. From Galilean Kinematics to Special Relativity

The Galilei group G admits the subgroup ISO(3), generated by the spatial rotations

SO(3) and spatial translations R3. This group is not simple and it admits a natural Inönü-

Wigner extension, with parameter 1/c: this gives the Lorentz group SO(3, 1), which is

stable, i.e., admits no further similar extension.
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This provides the extension of the full Galilei group to the Poincaré group, i.e., from

Newtonian kinematics to special relativity. The Poincaré group is however not simple and

the process may be continued.

D. Cosmology: SO(3, 2) and SO(4, 1)

We now describe the remaining two simple groups of our list of kinematic groups (they

are simple in the sense that they are not a semi-direct product of other subgroups): the anti-

deSitter (adS) group SO(3, 2) and the deSitter (dS) group SO(4, 1). They act as groups of

isometries of some respective four-dimensional space-times of constant but not zero curva-

tures.

The Lie algebras of each of these two groups admit ten generators Jab = −Jba, a, b =

0, 1, ..., 4, with commutators (compare with (20))

[Jab, Jcd] = i(ηacJbd − ηadJbc + ηbdJac − ηbcJad), (32)

where for dS

ηab = Diag(−1,+1,+1,+1,+1), (33)

and for adS

ηab = Diag(−1,−1,+1,+1,+1). (34)

The dS (adS) group is associated with the symmetries of the relativistic *** massless

??? *** Êparticle moving in the four-dimensional deSitter (anti-deSitter) space-time, with

a constant positive (negative) curvature. The deSitter space-time is simply-connected. The

equations of motion are of the form ẍµ + Γµνρ ẋ
ν ẋρ = 0, where dot here means a variation

with respect to proper time and Γµνρ are a set of functions associated with parallel transports

on the underlying curved space-time. The action, and also the Lagrangian, from which these

equations of motion derive are also invariant with respect to the dS group.

E. From Special Relativity to Cosmology

Like from SO(2) to ISO(2)=E(2), the natural augmentation of SO(3) is ISO(3): the

extension from the isotropies of Euclidean space to its isometries by adding the translations
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to the rotations. In the same way, P = ISO(3, 1) is the natural augmentation of SO(3, 1):

it completes the space-time translations with the space-time rotations.

Similarly, P admits a family of natural extensions with a parameter Λ called the cosmolog-

ical constant. A positive value gives dS = SO(4, 1), while a negative Λ gives AdS = SO(3, 2).

The limit value Λ → 0 corresponds to their common contraction to the Poincaré group P .

Both dS and AdS groups are stable, in the sense that they admit no further similar extension.

Interestingly, the process may be continued. The augmentations of the dS and AdS groups

(by adding translations) give respectively ISO(4, 1) and ISO(3, 2). Through the same

process, both admit a common extension under the form of the conformal group SO(4, 2).

The conformal group admits ten generators of the kinematic group, augmented by five

new generators, one for scaling transformations, and four generating the so called special

conformal transformations.

This group plays an important role in physics. For instance it preserves electromagnetism.

As proposed initially by Weyl [31] it may constitute the symmetry group of a conformal

theory of gravitation.

Finally, we may resume the previous results through the following diagram, with a cate-

gorical flavor,

SO(2)

augm

��

sg

%%
ISO(2) ext // SO(3)

sg

''
augm

��
ISO(3)

1
c // SO(3, 1)

sg

))
augm

��
P = ISO(3, 1) Λ // dS = SO(4, 1)

sg

((
augm

��
ISO(4, 1) ext // SO(4, 2) . . .

The oblique arrows indicate subgroup inclusion denoted by sg. This diagram may be

continued, but without straightforward applications to physics. A similar version of this

diagram applies where the dS = SO(4, 1) and ISO(4, 1) are replaced by AdS = SO(3, 2)

and ISO(3, 2), respectively.

Furthermore, the groups in the above series act as isometries of the space-times indicated

in the diagram below, where the symbol ie stands for isometrical embedding.
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SO(2)
sg //

��

SO(3)
sg //

��

SO(3, 1)
sg //

��

SO(4, 1)
sg //

��

SO(4, 2)

��
R2 ie // R3 ie // R3,1 ie // R4,1 ie // R4,2

dS

ie

OO

The notations R2,R3,R3,1, dS stand respectively for Euclidean plane, Euclidean space,

Minkowski space-time and deSitter space-time. The lower vertical arrow indicate that dS is

embedded in R4,1.

F. Remarks on the Quantum Domain

So far we have focused on transitions among kinematical symmetries. A similar discussion

may account for the theory change leading from the classical to the quantum domain.

Classical dynamics (for instance of the non-relativistic particle) may be described by a

Hamiltonian formalism in a phase space Γ. This is a symplectic manifold, whose canonical

(position and momentum) coordinates generate a commutative algebra of functions on Γ.

This is the Poisson algebra of classical observables. The process of quantization correspond

to the replacement of this algebra by a non-commutative algebra together with some extra

conditions: the algebra of quantum observables, seen as operators acting on an Hilbert space.

Mathematically, this can be accomplished by an algebra deformation procedure. The

latter associates to the Poisson algebra of classical observables a parametrized family of

non-commutative algebras. The quantum algebra of interest is then obtained with the value

~ of the parameter. The deformation procedure applied to Poisson algebra bears some

similarities with the extension of Lie algebras (see, e.g., [28]).

The deformation can be obtained through the definition of a new product, the star-

product (f, g)→ f ? g. This defines a quantization map which associates to each function f

(classical observable) an operator f̂ (quantum observable) such that

f̂(g)
def
= f ? g.

The deformation can be seen as a replacement of the original algebra by the new algebra of

such operators. Such Poisson algebra deformation is considered one of the general procedures
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for quantizing a system. The non commutation resulting from the deformation is at the origin

of the quantum uncertainty relations.

G. Non-commutative geometry

The diagram of isometries above (previous page) allows a geometrical interpretation of

the procedure of algebra extension: by considering each algebra in the chain as the isotropy

algebra of a pseudo-Riemannian manifold, it provides a chain of generalizations of such

manifolds. Although very important in physics, this is not the end of the story. The

deformation quantization seen in the previous section may be seen as a transformation of a

classical phase space (manifold) into a non-commutative space which is not a manifold.

This may be seen as a special and archetypal case of non-commutative geometry which

provides a generalization of manifolds under the form of new geometrical entities called non-

commutative spaces. The latter are not made of points and are in some sense discrete. Their

coordinates do not commute. The non-commutative geometry proceeds through a duality

between algebra and geometry generalizing the Gel’fand duality. The latter establishes a

one-to-one correspondence11 between (compact) topological spaces and commutative (unital)

algebras (the algebras of functions on them). The generalization of this correspondence to

non-commutative C-star-algebras precisely generates non-commutative geometry [9] which

associates a (possibly) non-commutative space to a C-star algebra. This procedure has

the geometrical interpretation of upgrading a manifold (a commutative space) to a non

commutative space. Quantization may be seen as a particular case when applied to the

phase space manifold.

Let us mention that this procedure is also applied to space-time, with the goal of con-

structing a new physics in the frame of a non-commutative space-time [25]. This intends for

instance to give a phenomenological description of the effects of quantum gravity which are

thought to destroy the manifold structure of space-time at small scales.

Another original possibility, developed by A. Connes and collaborators [7, 8], considers

matter fields living in an internal geometrical space. This is already the common view in clas-

sical field theories but this internal space is described here as a discrete, non-commutative

11 This is conveniently analyzed in the frame of category theory, where this correspondence appears as a

categorial equivalence established through adjoint functors. [21][22]
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space. The geometrical framework of the theory is provided by the product of the four-

dimensional (commutative) space-time manifold by this non-commutative internal space.

Application of a spectral action principle led Connes and his collaborators to a pure geo-

metrical derivation of the physics of both standard model and gravity.

H. Summary: Contraction versus Extension

The Inönü-Wigner extension generates a progression from Newton kinematics to (anti-

)deSitter and conformal kinematics. The opposite Inönü-Wigner contraction provides the

way back. An important issue concerns the physical meaning of the parameter involved in

the process. This may suggest a connection with other approaches of theory change based

on constructs and logic [13]. A physical interpretation of the parameter requires the use of

the representation theory of the underlying symmetry group.

Let us exemplify this point. In Newtonian physics, distances are endowed with a notion

of dimensionality: the result of a distance measurement is a ratio between a distance and

its unit (i.e., a meter). Similarly, time-durations are also endowed with a notion of dimen-

sionality: the result of a time measurement is a ratio between a duration and its unit (i.e.,

a second). Newtonian physics is thus characterized by two types of metric dimensionalities,

time and space.

Playing the game of Inönü-Wigner contraction/extension leads to the Poincaré group

which, in its fundamental representation, acts on the Minkowski space-time by preserving

its metric element (23). The resulting measuring procedures require a synthesis between the

two original (Newtonian) types of units. It is obtained through a conversion factor between

them, which identifies with the extension parameter 1/c (inverse of the speed of light) as it

appears in (23).

*** this has been officialized ... ***

The Newtonian limit 1/c→ 0 applies in the small (compared to c) velocity approximation,

where the conversion becomes irrelevant for practical use, so that distinct distance and time

units are reintroduced.

***A similar discussion applies to the contraction from AdS (or dS) to the Poincaré

group. The (anti-)deSitter space-time is defined in terms of its non-zero curvature, the

cosmological constant Λ which identifies with the deformation parameter. It provides a
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specific unit Λ−
1
2 identified to the curvature radius of that space-time, on which the (A)dS

group acts as isometry group.

Therefore its generators can be rescaled using the curvature as parameter. This at one

shot provides a physical meaning for the generators of the group and sets up the stage for

the Inönu-Wigner contraction. It is now a simple matter of taking the limit at the level of

the rescaled Lie algebras as the curvature reaches zero to obtain the Poincaré Lie algebra.

***

This last example in its 3-dimensional avatar was explicitly worked out in section III-A-1.

V. DISCUSSION AND CONCLUSION

We have analyzed theory change under the perspective of an improvement of the char-

acteristic symmetries. This exhibits in our opinion the inner-workings of the process and

allows us to address the problem of theory incorporation — and hence of scientific discovery

[20] — in terms of group inclusion.

The so called constructs [IS IT AN USUAL TERM ?] (also known as observables) which

characterize physical theories — like energy, momentum, spin, etc. — are basically obtained

from the theory of representation of the symmetry involved. This is where the connection

with the Bargmann-Wigner program enters into stage. Now, as emphasized by Inönü in [17]

– his personal recollection of his joint work with Wigner on the contraction of groups, the

attempt to apply correspondence limits – theory change – at the symmetry level directly to

the representations had “became incomprehensible”: [I DO NOT UNDERSTAND THAT

SENTENCE]

“... the original programme proposed to me by Wigner was completed and

I started to write the paper on the Galilei representations. But a question

remained: How is it that, the true representations of the Poincaré group have a

physical meaning while those of the Galilei group do not? Or, in other words,

how does the physical meaning disappear when one goes over from the Poincaré

group to the Galilei group? We thought that at least a partial answer could be

obtained by looking at the limits for infinite light velocity of the specific unitary

representations of the Poincaré group obtained by Wigner. The idea was to add
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an appendix to our Galilei paper, giving the results of this limiting process.

However, when I tried to take the limits of the unitary representations of the

Poincaré group, the outcome became incomprehensible. The limiting process

gave a finite answer in some cases, but vanished altogether in other cases. After

we struggled for a couple of weeks without obtaining consistent results, Wigner

had the bright idea of separating the problem into its essential components. He

said: ‘Let us first look at the limit of the group, understand what happens there,

and then consider the limits of the representations.’ This approach gave the clue

for solving our difficulties. (...)” [Excerpt from [17].]

We estimate that the precision of our mathematical procedure, describing theory change

via symmetry improvement, is not achieved in other exclusively logic approaches like for

instance the semantic one. The same conclusion is given by Halvorson [16] when he states

that despite their adequateness, the logic approaches are too general to usefully characterize

specific disciplines.

As far as physical theories are concerned, the present work has shown the heuristic power

embodied by the concept of symmetries – here presented in the framework of group theory

– for the discovery of new theories and the setting of their validity boundaries. Therefore

we may assert that the mathematical formulation together with a physical interpretation,

enables one to determine a physical theory and, in a sense, indicates a logic of discovery

where concepts directly emerge from the mathematical basis. In the present case this basis

stands on the symmetries of the physical theory.

The analysis of the mathematical structure in the present work paves the way to a

characterization of physical theories of a free particle. It also indicated a procedure for

the discovery of new theories of similar type and it sets up unambiguously their context of

validity.

Appendix A: The Wigner-Bargmann Program

Our assertion that a physics theory, at least those for non-interacting particles, can be

characterized in terms of kinematic symmetries and their representations is borrowed from

the Bargmann-Wigner program. This program provides a bridge between the proposed

characterization and other attempts to define a physical theory by means of its constructs.
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The Bargmann-Wigner program consists of a procedure to tackle the following problem.

Given a unitary irreducible representation (unirrep) – quantum domain – of a kinematic

group – symmetry –, one can construct a differential equation and its positive-frequency

solutions which manifestly transform under the given unirrep.

In the late 40’s, Bargmann and Wigner considered this problem in respect with some

unirreps of the Poincaré group (at least those that are physically relevant). They obtained

the known relativistic wave equations of Klein-Gordon and Dirac. Later on, the program

was completed for other unirreps. For the case of Galilei groups, the program initiated by

Wigner and Inönü, which inspired them into their notion of contraction, was later completed

by Lévy-Leblond.

The steps of the Bargmann-Wigner program may be summarized as follows [4, 5, 32]:

1. Choose a unirrep of the kinematic group. In principle, one can work not necessar-

ily with a unirrep but with a symplectic irreducible representation of the kinematic

group. This choice of representation would then provide the corresponding classical

Hamiltonian equations from which corresponding geodesic equations can be obtained.

We continue the list of steps for the quantum aspect of the procedure only.

2. Write wave functions on the underlying space-time manifold taking values on the

chosen unirrep of the previous item.

3. Write a system of differential equations on the space-time manifold for which the

written wave function is a solution. This differential equation may be written as an

algebraic equation by Fourier transforming it.

4. Look at the physical degrees of freedom. Some components of the wave function may

be unphysical like for instance the longitudinal oscillations of the massless relativistic

wave functions. Such components should vanish and only the real physical degrees of

freedom would be valued in the unirrep of item 1.

We refer to the nice reference [5] for explicit examples of this program like that of the

Klein-Gordon equation.
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